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SUMMARY
Quality control of induced pluripotent stem cells remains a challenge. For validation of the pluripotent state, it is crucial to determine

trilineage differentiation potential toward endoderm, mesoderm, and ectoderm. Here, we report GermLayerTracker, a combination of

site-specific DNA methylation (DNAm) assays that serve as biomarker for early germ layer specification. CG dinucleotides (CpGs) were

identified with characteristic DNAm at pluripotent state and after differentiation into endoderm, mesoderm, and ectoderm. Based on

this, a pluripotency score was derived that tracks reprogramming and may indicate differentiation capacity, as well as lineage-specific

scores to monitor either directed differentiation or self-organized multilineage differentiation in embryoid bodies. Furthermore, we es-

tablished pyrosequencing assays for fast and cost-effective analysis. In the future, the GermLayerTracker could be used for quality control

of pluripotent cells and to estimate lineage-specific commitment during initial differentiation events.
INTRODUCTION

The hallmark of pluripotent stem cells (PSCs) is their ability

to differentiate toward the three embryonic germ layers. To

confirm pluripotency, the cells are usually either directed

toward these lineages with specific culture media or with

undirected multilineage differentiation assays in embryoid

bodies (EBs) or teratomas (International Stem Cell Initia-

tive, 2018). Marker genes can then be evaluated on gene

expression or on protein level, such as SOX17 and GATA6

for endoderm, GATA2 and TBXT (Brachyury) for meso-

derm, or SOX2 and PAX6 for ectoderm (Gifford et al.,

2013; O’Shea et al., 2020). The ScoreCard panel based on

quantitative reverse transcription PCR (qRT-PCR) measure-

ments of 96 genes can be used to determine early germ-

layer-specific differentiation (Bock et al., 2011; Tsankov

et al., 2015). Pluripotency can also be predicted based on

gene expression profiles through PluriTest, a bioinformatic

analysis of transcriptomes of undifferentiated cells (Muller

et al., 2011). It reflects transcriptomic characteristics of

PSCs, but it does not reveal differentiation capacity into

specific germ layers (Bouma et al., 2017). A quantitative,

robust, and scalable assay that can estimate germ layer-

associated cell fractions in early differentiation is yet

elusive. To this end, an epigenetic assay might be

advantageous.

DNA methylation (DNAm) plays an important role in

cellular differentiation and manifests during embryonic

development (Bock et al., 2011). It occurs particularly at

cytosine-guanine-dinucleotides (CpG sites), and these

epigeneticmodifications can be cell type specific (Roadmap

Epigenomics Consortium et al., 2015). Since every cell has

two DNA copies, DNAm is well suited to apply deconvolu-
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tion algorithms to estimate the composition of different

cell types (Wagner, 2022). This approach has been used

for deconvolution of leukocyte subsets in blood (Frobel

et al., 2018; Houseman et al., 2012; Sontag et al., 2022) or

even of complex tissues (Moss et al., 2018; Schmidt et al.,

2020). Furthermore, we have previously described the

Epi-Pluri-Score, a signature that can discern pluripotent

and non-pluripotent cells based on DNAm changes that

occur at three specific CpG sites (Lenz et al., 2015). How-

ever, the Epi-Pluri-Score has not been designed to detect

early differentiation events toward specific lineages.

In this study, we therefore aimed to identify character-

istic DNAm signatures for each of the three germ layers.

Notably, in some datasets transcriptomic and epigenetic

changes during commitment toward mesoderm versus

endoderm could hardly be discerned, which further sub-

stantiates the need for reliable biomarkers for specific cell

fate decisions. Nevertheless, we could select three CpGs

with characteristic DNAm for undifferentiated pluripotent

cells, endoderm, mesoderm, ectoderm, and endomeso-

derm. Based on this, we developed GermLayerTracker: a

tool consisting of a pluripotency score that may be indica-

tive for differentiation potential and lineage-specific

signatures to estimate fractions of early cell fate decisions

in differentiation assays.
RESULTS

DNA methylation changes during directed germ layer

specification

We differentiated three lines of induced pluripotent stem

cells (iPSCs) toward endoderm, mesoderm, and ectoderm
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to analyze their DNAm profiles with the Infinium EPIC

BeadChips (Figures S1A and S1B; dataset 1). In addition,

we utilized 114 DNAm profiles of iPSCs and embryonic

stem cells (ESCs) that were differentiated with different

protocols (dataset 2; 450K BeadChip platform; Table S1)

(Daily et al., 2017). Multidimensional scaling (MDS)

showed that iPSCs differentiated toward ectoderm clus-

tered apart, whereas cells differentiated toward endoderm

and mesoderm appeared most closely related (Figure 1A).

Stem cells from dataset 1 appear to be clustering closer to

the endodermal andmesodermal cells fromdataset 2. How-

ever, it needs to be considered that this MDS analysis may

also be affected by confounding effects, such as different

cell types used for reprogramming, microarray platforms,

and batch effects (Figure S1C).

Lineage-specific DNAm changes were initially analyzed

for both datasets separately (for dataset 2, only PSCs with

corresponding data for germ layer differentiation) (Daily

et al., 2017). Many CpGs revealed significant hyper- or hy-

pomethylation during differentiation toward endoderm,

mesoderm, or ectoderm (Figure 1B, DNAm difference

R20%, adjusted p values % 0.05; Figure S2A). Notably, da-

taset 2 showed a very high overlap of DNAm changes to-

ward mesoderm and endoderm (Figure S2B). Direct com-

parison of DNAm profiles from endoderm and mesoderm

further substantiated that their epigenetic markup was

very similar in dataset 2 (Figure 1C).

Corresponding RNA sequencing data revealed overall

consistent gene expression changes during trilineage dif-

ferentiation (Figure 1D). Many genes become significantly

up- or downregulated during differentiation toward endo-

derm, mesoderm, and ectoderm (fold change >2; adjusted

p value < 0.05; Figure S2C). In tendency, genes with hypo-

methylation in promoter regions showed upregulated gene

expression, and vice versa (Figure S2D). In analogy to the

DNAm data, there was a high overlap of differential gene

expression during differentiation toward endoderm and

mesoderm in dataset 2 (Figure S2E). Canonical markers

for mesodermal differentiation were particularly upregu-

lated in dataset 1 (Figure 1E). These results demonstrate

that depending on the differentiation regimen, the differ-

ences between endoderm andmesodermmay only bemar-

ginal, which needs to be considered for identification of

germ-layer-specific signatures.

Development of an epigenetic signature for

pluripotent state

Established quality control measures for pluripotent cells

should be able to detect early differentiation events. How-

ever, the previously described PluriTest (Muller et al., 2011)

and Epi-Pluri-Score (Lenz et al., 2015) have been specif-

ically developed to discern pluripotent and somatic cell

types, while it remained unclear if these assays would also
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reliably capture the transcriptomic/epigenetic changes dur-

ing early differentiation toward the three germ layers. We

therefore applied PluriTest analysis to the RNA-seq profiles

of datasets 1 and 2 (Figure S3A). Notably, PluriTest results of

all samples—even the pluripotent iPSC and ESCs—did not

cluster with the pluripotent samples of the reference

cohort, which might be due to the fact that the assay was

initially designed for a microarray platform that was mean-

while discontinued. Furthermore, endoderm and meso-

derm differentiated cells had similar PluriTest results as

the non-differentiated pluripotent cells. In analogy, Epi-

Pluri-Score classified DNAm profiles of all samples as

pluripotent, even those that were differentiated for few

days toward endoderm, mesoderm, and ectoderm (Fig-

ure S3B). Taken together, PluriTest and Epi-Pluri-Score

could not reliably capture early differentiation events.

For the development of GermLayerTracker, we therefore

established a new pluripotency score based on the early

DNAm changes during differentiation toward endoderm,

mesoderm, and ectoderm. Relevant CpGs were selected

for high difference in mean methylation and low variance

within the groups with the R package CimpleG (Maié et al.,

2022). As a selection set, we used the undifferentiated and

differentiated samples of the three iPSC lines of our dataset

1 and three randomly selected PSC lines from dataset 2 to

have balance between the studies. We decided to derive

small epigenetic signatures, which facilitate targeted

DNAm analysis, and therefore selected only three candi-

date CpGs for PSCs (Figure 2A). The three top CpGs were

as follows: cg00661673, associated with the gene Palladin

(PALLD); cg00933813, not associated with a specific gene;

and cg21699252, associated with MYCN opposite strand

(MYCNOS). The DNAm values at these sites were combined

into a pluripotency score (sum of the DNAm levels and

1 � DNAm level for the hypomethylated sites), which

could clearly separate PSC and the differentiated cells in

the selection set (Figures 2B and S3C). Similar results were

observed when we used the remaining samples of dataset

2 for initial validation (Figures 2C and S3D). Notably, the

pluripotency score could also discern three samples that re-

vealed deviations within the analysis of gene expression

and DNAm profiles. In fact, extensive previous character-

ization of these cell lines revealed structural anomalies for

SC12-040, decreased expression of pluripotency markers

and spontaneous differentiation for SC12-021, and

abnormal copy number variations that where not shared

with the donor for SC11-004 (Salomonis et al., 2016).

This exemplifies that our approach can support quality

control. Furthermore, the pluripotency score could

correctly separate PSCs and early differentiated cells in a

completely independent collection of pluripotent and

iPSC-derived cell types (dataset 3; Table S1 and Figure 2D).

We also investigated somatic cells and found that the



Figure 1. Germ-layer-specific DNA methylation during 2D iPSC differentiation
(A) Multidimensional scaling (MDS) plot of the top 10,000 most variable CpGs from own (dataset 1) and public DNAm profiles (dataset 2)
(Daily et al., 2017). In gray are PSC lines from dataset 2 without corresponding differentiated samples. The names of three PSC outlier
samples are depicted.
(B) Scatterplots of mean beta values (DNAm levels) at individual CpG sites for pairwise comparisons. Highlighted are CpGs R0.2 mean
difference in beta values and colored if their adjusted p values are %0.05.
(C) Direct comparison of DNAm profiles from endoderm and mesoderm demonstrates that there is only a little difference between these
differentiated cell types in dataset 2.
(D) Principal component analysis (PCA) of RNA-seq profiles of samples from our own (dataset 1) and public data (dataset 2) (Daily et al.,
2017). The names of three PSC outlier samples are depicted.
(E) Gene expression of canonical germ layer marker genes (ten for each lineage) in samples from our own (dataset 1) and public datasets
(dataset 2). The heatmap depicts Z score of vst-transformed read counts. See also Figures S1 and S2.
pluripotency score was consistently very low in primary

cell types (549 DNAm profiles compiled from 21 studies;

Schmidt et al., 2020; dataset 4; Figures 2E and S3F).
Next, we investigated how the pluripotency score

changes in the course of reprogramming. To this end, we

analyzed a dataset of three fibroblast lines, which were
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Figure 2. Derivation of a new pluripotency score based on DNAm at three CpGs
(A) The DNAm profiles of pluripotent stem cells (PSC) were compared with all other differentiated cell types (endoderm, mesoderm, and
ectoderm) to identify three candidate CpGs. The difference in mean beta values (DNAm levels) is plotted against the combined variance
within the groups. The parabola is part of the selection process (mean parabola parameter exemplarily visualized).
(B) The pluripotency score of the samples used for CpG selection. The score is a sum of 1 – DNAm of the individual specifically hypo-
methylated CpGs.
(C) The pluripotency score of the remaining samples from dataset 2 (Daily et al., 2017).
(D) The pluripotency score of various iPSC-derived cell types (dataset 3; Table S1).
(E) The pluripotency score for a collection of various somatic cell types (dataset 4; Table S1) (Schmidt et al., 2020).
(F) The pluripotency score for three different fibroblast lines during reprogramming into iPSCs (GEO: GSE54848; dataset 5) (Ohnuki et al.,
2014).
(G) The pluripotency score for iPSC samples (GEO: GSE59091, dataset 6) (Butcher et al., 2016), which have been grouped into high
differentiation capacity (HDC) and low differentiation capacity (LDC) toward endoderm. The primary donor samples (fibroblasts and
endothelial precursors) are shown for comparison. p values were calculated with Wilcoxon test (**p < 0.01). Values depicted are means of
multiple replicates. See also Figure S3.
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reprogrammedwith retroviral vectors and sorted for TRA-1-

60 expression at various time points (dataset 5) (Ohnuki

et al., 2014). We have previously demonstrated that most

pluripotency-associated genes in this dataset reveal consis-

tent DNAm changes between day 15 and day 20 (Franzen

et al., 2021), which is also exemplified by a drastic change

in Epi-Pluri-Score analysis (Figure S3G). In contrast, the

pluripotency score increases linearly during reprogram-

ming until reaching similar levels compared with ESCs

and iPSCs at day 42 (Figures 2F and S3H). This indicates

that our selected sites are a good indicator for the reprog-

ramming status of these cells.

Finally, we benchmarked our pluripotency score on

DNAm profiles of PSCs that fulfilled criteria for

pluripotency but revealed either higher differentiation

capacity (HDC) or lower differentiation capacity toward

endoderm (LDC; GEO: GSE59091, dataset 6) (Butcher

et al., 2016). Notably, the pluripotency score was overall

significantly higher in HDC than LDC pluripotent cells (p

value = 0.009; Figures 2G and S3I). These findings indicate

that the pluripotency score not only discerns early differen-

tiation steps but might also provide a quality measure for

pluripotent differentiation potential. This still needs to be

further validated with more cell lines and with regard to

three-lineage differentiation potential.

Selection of germ-layer-specific CpG sites

Since our biomarker should also reflect the specific differen-

tiation toward endoderm, mesoderm, or ectoderm, we

selected candidate CpGs for each germ layer as well. To

this end, we used the same selection set as for the pluripo-

tency score and applied the same selectionmethod for each

differentiated cell type (Figure 3A). Based on this, we

selected the three top CpGs for endoderm (ENDO):

cg20548013, associated with phosphatase and actin regu-

lator 1 (PHACTR1); cg14521421, associated with DENN

domain containing 2B (DENND2B); and cg08913523 (no

gene); for mesoderm (MESO) the CpGs cg14708360 (no

gene); cg08826152, associated with adenosine receptor

A2B (ADORA2B); and cg11599718 associated with vacuolar
Figure 3. Selection of germ-layer-specific CpG sites
(A) Selection of candidate CpGs for endoderm (ENDO), mesoderm (ME
lection set. The difference in mean beta values (DNAm levels) is plo
parabola parameter is exemplarily visualized and the selected candid
(B) The heatmap depicts differentiation scores of the CpG sites for the
of the DNAm levels to the reference stem cells (for hypomethylated CpG
to stem cells, red means a change toward specific methylation and b
(C) Deconvolution results (with either ENDO and MESO in upper row, or
approach.
(D) Differentiation scores for iPSC-derived cells that were differentia
analogy to B).
(E) Deconvolution results for dataset 3 (formatted in analogy to C).
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protein sorting-associated protein 37B (VPS37B); for

ectoderm (ECTO) the CpGs cg01907071, associated

with the gene thrombospondin type 1 domain containing

4 (THSD4); cg18118164, associated with ephrin A5

(EFNA5); and cg13075942, associated with RAD51 Paralog

B (RAD51B). Since endoderm and mesoderm were closely

related, particularly in dataset 2, we also selected candidate

CpGs for a combination of endoderm and mesoderm

(ENDOMESO): cg23385847, associated with the gene cal-

cium/calmodulin dependent protein kinase IV (CAMK4);

cg24919344 (no gene); and cg11147278 (no gene).

These candidate CpGs were subsequently validated in

the remaining samples of dataset 2. Since the CpGs reveal

cell-type-specific hypo- or hypermethylation, we used the

complementary DNAm levels (1 – DNAm) for hypomethy-

lated sites to provide differentiation scores that increase

with differentiation. These scores were calculated as differ-

ence to the mean DNAm level of undifferentiated samples

(Figure 3B). Alternatively, we estimated the fraction of line-

age-specific differentiation in the cell population by decon-

volution with a non-negative least squares approach,

which is however hampered by the fact that we are looking

for early germ layer specification and not for a defined

endpoint in differentiation and by the discrepancy of the

outcome between different germ layer differentiation pro-

tocols. Either way, the deconvolution approach classified

most samples correctly into the categories PSC, ENDO,

MESO, ECTO, and ENDOMESO (Figure 3C). The three

outlier PSC samples could again be discriminated by higher

differentiation scores. Furthermore, the individual DNAm

levels as well as the deconvolution approach classified

most iPSC-derived cells correctly that have been differenti-

ated toward various cell types (dataset 3; Figures 3D

and 3E).

DNA methylation changes in embryoid bodies

To determine if GermLayerTracker would also capture the

germ-layer-specific epigenetic modifications during spon-

taneous differentiation, we generated EBs and analyzed

DNAm profiles before (day 0), at day 4, and at day 7 after
SO), ectoderm (ECTO), and endomesoderm (ENDOMESO) in the se-
tted against the combined variance within the groups. The mean
ate CpGs indicated.
remaining samples from dataset 2. The scores show the differences
s, 1 – DNAm was calculated); white means no change in comparison
lue vice versa.
the ENDOMESO in lower row) based on a non-negative least squares

ted toward different cell types (dataset 3; Table S1; formatted in



aggregation (EB dataset 1; Table S1). As expected, the three

CpGs that are specific for the undifferentiated state change

already within 4 days of undirected EB differentiation,

which is reflected by a rapid decline of the pluripotency

score (Figure 4A), indicating that most of the cells did exit

the pluripotent state. Furthermore, the differentiation

scores (Figure 4B) pointed toward differentiation in the

three germ layers. However, the ENDOMESO-associated

CpG site cg2338547 did not reveal the expected hyperme-

thylation in this dataset, resulting in a discrepancy in de-

convolution predictions (Figure 4C).

Furthermore, we used public DNAmprofiles of EBs at day

17 (EB dataset 2; Table S1) (Daily et al., 2017). The differen-

tiation scores and deconvolution results again demon-

strated gain of lineage-specific epigenetic patterns. The

strong changes in the MESO CpGs dominated deconvolu-

tion results. Notably, the results indicated that some of

the EBs differentiated more toward ectodermal or endo-

dermal lineage (Figure 4D). This finding may reflect the

different propensity of each iPSC line to differentiate pref-

erentially toward one or the other cell line.

We then used the available gene expression data from the

day 17 EBs (Daily et al., 2017) to determine if lineage-spe-

cific bias is also reflected in the transcriptome. To this

end,wehave first identified gene signatures that are charac-

teristic for the different germ layers during spontaneous

differentiation. Public single-cell RNA sequencing data

derived from EBs at day 8 clustered according to the germ

layers (Figure S4) (Han et al., 2018). Based on this, we

selected gene lists that are most prominently associated

with the endoderm, mesoderm, and ectodermal cluster

(Table S2). In fact, the genes of this ectodermal signature

were overall higher expressed in EBs that were also pre-

dicted to have ectodermal bias in the GermLayerTracker

(Figure 4E).

Targeted assays with pyrosequencing

Subsequently, we designed pyrosequencing assays

for targeted analysis of the relevant CpGs to make

GermLayerTracker applicable without the need of Illumina

BeadChip analysis. When we reanalyzed the samples from

the directed differentiation, the DNAm levels showed little

deviation between pyrosequencing and EPIC BeadChip

measurements (Figure S5A). Either way,we used the pyrose-

quencing results to adjust the reference matrix for decon-

volution (Figure S5B). To further benchmark this assay,

we again generated EBs and cultured them for 5 or

15 days.We also used our iPSC lines with PRDM8 knockout

(PRDM8�/�) that have been shown to reveal lower propen-

sity to differentiate toward neurons (Cypris et al., 2020).

Furthermore, we used in-house iPSC lines with YAP1

knockout (YAP�/�) that hardly differentiated toward

ectoderm (Zeevaert et al., 2022), and this phenotype
has recently also been described by others (Stronati

et al., 2022). The pyrosequencing measurements for

GermLayerTracker could clearly discern non-differentiated

pluripotent cells from either directed differentiation or EBs

(Figure 5A). Furthermore, the differentiation scores clearly

demonstrated that EBs of PRDM8�/� andYAP�/� did not ac-

quire the typical ectoderm-associated DNAm. The decon-

volution results for these knockout lines demonstrated

lower fractions of ectoderm, accordingly (Figure 5B). To

further benchmark our results, we have also analyzed

gene expression of germ-layer-associated genes in these

samples with qRT-PCR: POU5F1 (OCT4) for pluripotent

cells, GATA6 for endoderm, TBXT (Brachyury) for meso-

derm, and PAX6 for ectoderm (Figure 5C). Furthermore,

we performed ScoreCard assays for selected samples (Fig-

ure 5D). Overall, the predictions with GermLayerTracker

were in line with the results from qRT-PCR and the

ScoreCard for the knockout cell lines.
DISCUSSION

Quality measures of iPSC lines can be used for different ob-

jectives: (1) to monitor initial reprogramming of somatic

cells, (2) to determine differentiation capacity of non-

differentiated cells, and (3) to track differentiation to ulti-

mately validate pluripotent differentiation potential (Steeg

et al., 2021).

Initial monitoring of reprogramming often relies on

microscopic assessment of colony morphology or upregu-

lation of individual markers by immunofluorescence or

qRT-PCR, but these approaches are difficult to quantify

and lack standardized thresholds. A broader gene expres-

sion signature, such as PluriTest (Muller et al., 2011), can

provide a more robust measure for successful reprogram-

ming. However, when we applied the online PluriTest

tool using the proprietary algorithm for pre-processing of

RNA-seq results, the non-differentiated iPSCs were not

clearly associated with the highlighted area for pluripo-

tency in the empirical density map, and early differentia-

tion events were not reliably detected. Our previously

described Epi-Pluri-Score can provide a good alternative

to validate reprogramming into pluripotent state (Lenz

et al., 2015). In fact, it could clearly discern the three

iPSC lines SC12-040, SC12-021, and SC11-004, which

apparently did not resemble normal pluripotent cell lines

(Salomonis et al., 2016). However, therewas so far no epige-

netic biomarker to detect early germ-layer-specific cell fate

decisions.

In this study, we describe GermLayerTracker, which

was—in contrast to the above-mentioned approaches—

specifically designed to detect early differentiation events.

Although the signaturewas not developed on somatic cells,
Stem Cell Reports j Vol. 18 j 145–158 j January 10, 2023 151



Figure 4. Pluripotency and differentiation scores in embryoid bodies
(A) Pluripotency score of the EBs from before (day 0), after 4 days, after 7 days, and after 17 days of differentiation.
(B) Differentiation scores for the same samples demonstrate that most, but not all CpGs, reveal lineage-specific DNAm changes. The scores
show the differences of the DNAm levels to the reference stem cells (for hypomethylated CpGs, 1 – DNAm was calculated).
(C) Deconvolution results with either ENDO and MESO CpGs (in upper row) or the ENDOMESO CpGs (in lower row).
(D) Differentiation scores and deconvolution results for EBs after 17 days of culture (Daily et al., 2017). The samples are ordered based on
the fraction of ectoderm in the deconvolution results.
(E) Heatmap depicts Z scores gene expression signatures for endoderm (279 genes), mesoderm (425 genes), and ectoderm (516 genes) in the
corresponding EBs. These signatures were derived from a public single-cell RNA sequencing dataset for D8 EBs (Han et al., 2018). Overall, EBs
with ectodermal bias in our epigenetic scores revealed also higher expression of ectodermal gene expression. See also Figure S4.
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it could reliably discern somatic and pluripotent cells. In

contrast to our previous Epi-Pluri-Test, the pluripotency

score gradually increased during reprogramming until

day 42 and might therefore better monitor the state of re-

programming. Furthermore, the pluripotency score was

overall higher in iPSCs with HDC versus LDC toward endo-

derm (Butcher et al., 2016), which might suggest that the

method could also be applied to estimate the differentia-

tion capacity of the non-differentiated iPSCs. However, in

this dataset the differentiation capacity toward mesoderm

and ectoderm has not been addressed. It will therefore be

necessary to further validate if the GermLayerTracker

might be indicative for the differentiation potential of

iPSCs already under pluripotent culture conditions. To

this end, it would also be necessary to better define

thresholds.

So far, validation of trilineage differentiation potential re-

quires upfront differentiation with either directed or

spontaneous differentiation for subsequent analysis. The

teratoma assay is a method to test pluripotency by trans-

planting PSCs into an immunodeficient mouse where

they will spontaneously form germ cell tumors with immu-

nophenotypic characteristics of all germ layers (Interna-

tional StemCell Initiative, 2018). This assay raises concerns

for animal welfare, analysis takes several months, and it is

costly. Moreover, teratoma formation has high variability

and can hardly be quantified (Dolgin, 2010; Muller et al.,

2010; Tsankov et al., 2015). The ScoreCard assay is based

on directed or spontaneous differentiation regimen and

utilizes a relatively large panel of references genes. In anal-

ogy, our GermLayerTracker could track early lineage deci-

sions in directed differentiation. Furthermore, it could be

used to estimate the cellular composition in EBs. The pre-

dicted ectodermal fractions correlated in gene expression

profiles and deconvolution results. Furthermore, iPSC lines

with impaired undirected ectodermal differentiation, such

as PRDM8�/� and YAP�/� lines could be identified.

Many laboratories aremore used to gene expression anal-

ysis compared with DNAm analysis. However, targeted

DNAm analysis is also feasible with other methods, such
Figure 5. Targeted assays of selected CpGs measured with pyrose
(A) Pluripotency scores of samples measured with pyrosequencing. Th
Here, we used the same iPSCs as for the BeadChips with directed differe
(ECTO), as well as EBs before, after 5 days, and after 15 days of spo
respectively). In addition, three knockout (KO) iPSC lines were used
(B) Differentiation scores for these samples was measured with pyrose
reference stem cells (for hypomethylated CpGs, 1 – DNAm was calcula
ENDOMESO CpGs are also shown.
(C) qRT-PCR results of germ-layer-specific genes. The heatmap depicts d
of technical replicates.
(D) ScoreCard results. Shown are the combined gene expression score
iPSC lines. See also Figure S5.
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as EpiTYPER, digital droplet PCR, or amplicon deep

sequencing (Han et al., 2020). To this end, a method could

also be established for these alternative instruments in the

future. Handling and shipment of DNA samples is

easier than that of RNA samples, which would be a benefit

for centralized analysis, e.g., by a service provider.

GermLayerTracker is only based on 12 CpGs (with

ENDOMESO 15 CpGs). Such small signatures are a trade-

off since they may be more susceptible to individual out-

liers than signatures that integrate hundreds of CpGs. On

the other hand, such targeted assays can be measured in a

cost-effective and robust manner, independent of specific

microarray platforms or bioinformatic tools. This is impor-

tant if such assays should be utilized for clinical validation

of therapeutic cellular products, which may even require

accreditation as an in vitro diagnostic device (Wagner,

2022). In fact, we and others have demonstrated before

that even individual CpGsmay provide reliable biomarkers

(Schmidt et al., 2020; Sontag et al., 2022), and it is therefore

conceivable to further narrow down the CpGs of

GermLayerTracker.

We were facing various challenges during this study. (1)

The number of available datasets was limited, and (2) it

was unexpected that the directed differentiation regimen

with different protocols resulted in quite different DNAm

and gene expression profiles; it evenwas difficult to reliably

discern endoderm and mesoderm in dataset 2. In the

future, additional datasets should be generated with alter-

native differentiation regimen to better identify and

validate specific DNAm changes for endoderm and meso-

derm. (3) The DNAm changes during directed differentia-

tion with differentiation media do not necessarily reflect

spontaneous differentiation in EBs. Sorting of cells would

be advantageous to further adjust the signatures for

spontaneous differentiation. (4) For validation of the de-

convolution approach, there is no dataset available with

quantitative data for lineage commitment in EBs. Specific

DNAmpatterns have been successfully used for deconvolu-

tion of cell populations, e.g., for the composition of leuko-

cyte subsets (Frobel et al., 2018; Houseman et al., 2012;
quencing
e methylation values of the three CpGs are also shown individually.
ntiation toward endoderm (ENDO), mesoderm (MESO), and ectoderm
ntaneous differentiation in suspension culture (D0, D5, and D15,
(two YAP–/– and PRDM8�/�).
quencing. The scores show the differences of the DNAm levels to the
ted). The deconvolution results with either ENDO and MESO or the

dCT values compared with the stem cells. Values depicted are means

s for each germ layer relative to the reference standard for selected



Sontag et al., 2022), or even of complex tissues (Moss et al.,

2018; Schmidt et al., 2020), but all of these applications

were applied on terminally differentiated cells. In contrast,

the differentiation process of iPSCs rather resembles a con-

tinuumwithout a fixed endpointwhen the early germ layer

differentiation is complete. The deconvolution results of

GermLayerTracker can therefore not reflect the absolute

composition of different cell types, but rather they provide

a surrogate marker to estimate early cell fate decisions.

Taken together, our analysis provides further insight into

epigenetic changes inearlycell fatedecisions.Weestablished

candidate CpGs for assessment of PSC at pluripotent state

and to capture early cell fate decisions toward endoderm,

mesoderm, and ectoderm. GermLayerTracker provides

various advantages when compared with conventional

methods for quality control of iPSCs. Such analysis can

also be used for optimization of culture conditions to main-

tain a larger proportion of cells in pluripotent state or to

better direct differentiation toward specific germ layers.
EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author

Further information and requests for resources and reagents

should be directed to and will be fulfilled by the corresponding

author, Wolfgang Wagner (wwagner@ukaachen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The generated RNA-seq and methylation data are available on the

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)

under the accession number GSE207119. The current study did

not generate any original code. Additional information required

to reanalyze the data can be provided upon request from the corre-

sponding author.
Cell culture and directed differentiation
Four human iPSC lines were generated by reprogramming with

episomal plasmids from bone-marrow-derived mesenchymal stro-

mal cells (iPSC 102, iPSC 104, iPSC 106 (Goetzke et al., 2018),

which can be found on hPSCreg under UKAi009-A, UKAi010-A,

and UKAi011-A) or dermal fibroblast (TF11-C2.3) (Willmann

et al., 2013). All samples were taken after informed and written

consent using guidelines approved by the Ethic Committee for

the Use of Human Subjects at the University of Aachen (permit

number: EK128/09). The iPSC lines were cultured on tissue culture

plastic coated with vitronectin (0.5 mg/cm2) in StemMACS iPS-

Brew XF (Miltenyi Biotec, Bergisch Gladbach, Germany). Directed

differentiation toward endodermal, mesodermal, and ectodermal

lineage was induced with the STEMdiff Trilineage Differentiation

Kit (Stemcell Technologies, Vancouver, Canada; Figure S1A).
Embryoid body formation
Self-detaching iPSCs were generated, as described before (Elsafi

Mabrouk et al., 2022). In brief, vitronectin was micro-contact

printed (diameter 600 mm), and iPSCs grew and self-organized on

these substrates. After about 6 days, when more than 50% of the

colonies detached, the floating aggregates were harvested and

considered as day 0 for further differentiation steps. Alternatively,

Spin-EBs were generated as described previously (Ng et al., 2005).

Non-directed multilineage differentiation of EBs was performed

in ultra-low attachment plates (Corning, NY, USA) with differenti-

ation induction medium (EB-medium) containing Knockout

DMEM/F12, 20% KnockOut serum replacement, 2 mM

GlutaMAX Supplement, 0.1 mM non-essential amino acids,

0.1 mM b-Mercaptoethanol (all from Gibco, Carlsbad, USA). For

long-term culture of EBs for 15 days, EBs were transferred from ul-

tra-low attachment plates to 0.1% gelatin-coated plates after day 7.

Medium was changed every second day.

Immunostaining
Cells were fixed with 4% paraformaldehyde for 20 min, treated

with PBS containing 1% BSA and 0.1% Triton X-100 (Bio-Rad, Mu-

nich, Germany) for 30 min, and then incubated overnight at 4�C
with primary antibodies against OCT4 (clone C-10; Santa Cruz,

Dallas, Texas, USA), GATA6 (clone D61E4; Cell Signaling, Danvers,

USA), Brachyury (R&D Systems, Minneapolis, USA), and PAX6

(clone AD2.35; Santa Cruz, Dallas, USA). Secondary antibody

staining was done at room temperature for 1 h with donkey anti-

goat (Alexa Fluor 488), goat anti-rabbit (Alexa Fluor 594), and

goat anti-mouse (Alexa Fluor 594), all from Invitrogen (Waltham,

USA). Samples were counterstained with DAPI (10 ng/mL) for

15 min and imaged using an Axioplan 2 Fluorescence Microscope

from Zeiss.

DNA methylation profiling
Genomic DNA was isolated with the NucleoSpin Tissue Kit

(Macherey-Nagel, Düren, Germany) and quantified with a

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,

Waltham, USA). 1.2 mg DNA was bisulfite converted and analyzed

with Illumina EPIC BeadChip microarrays at Life & Brain (Bonn,

Germany; dataset 1). Additionally, we used 114 DNA methylation

profiles of iPSC and iPSC-derived cells (PSC, ENDO, MESO, ECTO,

and EB) that were generated on Illumina HumanMethylation450

BeadChips by Progenitor Cell Biology Consortium (PCBC) of the

National Heart, Lung and Blood Institute (dataset 2; Table S1)

(Daily et al., 2017) from Gene Expression Omnibus (https://

www.ncbi.nlm.nih.gov/geo; GSE85828). For comparison, we

used DNAm profiles of iPSC-derived cells that were differentiated

toward various cell types (dataset 3; Table S1). For the somatic cells,

we used a selection of DNAm profiles that have been compiled for

our previous work across many studies (dataset 4; Table S1)

(Schmidt et al., 2020). Public DNAmprofiles from cells undergoing

reprogramming into iPSCs were downloaded from GEO

(GSE54848; dataset 5; Table S1) (Ohnuki et al., 2014). Furthermore,

we used DNAm profiles of iPSCs with HDC or LDC toward endo-

derm (GSE59091; dataset 6, for samples with replicas, we used al-

ways the mean values across all corresponding replicas) (Butcher

et al., 2016).
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The IDAT files of the Illumina BeadChips were loaded and pre-

processed with minfi (Aryee et al., 2014) in R (4.1.3). Low-quality

samples were removed (threshold: sum of the medians of the

methylated and unmethylated channels <20), and the remaining

samples were normalized with ssNoob (Triche et al., 2013). For

samples where no IDAT files were available, we used already exist-

ing beta values or generated the beta values from the signal

intensities. CpG sites on XY chromosomes, non-CG probes, and

SNP-associated CpGs were not considered for further analysis.

Furthermore, we only considered CpGs that were represented by

the 450K and EPIC BeadChip platforms. The limma R package

(3.48.0) was used for calculation of Benjamini-Hochberg adjusted

p values and theMDS plots. Relevant DNAm changes were defined

as showing at least 20% difference in mean beta values and an

adjusted p value % 0.05. Fisher exact test was performed with

the R package GeneOverlap. The R packages ggplot2, ggrepel,

ggbeeswarm, reshape2, ggExtra, ggsignif, cowplot, gprofiler2,

ComplexHeatmap, and VennDiagram were used for graphical

presentation.

Selection of epigenetic biomarkers
The selection of candidate marker CpGs is based on the R package

CimpleG (https://github.com/CostaLab/CimpleG) (Maié et al.,

2022). We selected CpG sites with high difference in mean beta

values and low variances within the groups. The pluripotency

score is based on the sum of DNAm at the three pluripotency-asso-

ciated CpGs: cg00661673, cg00933813, and cg21699252. Since all

these CpGs have lower DNAm in pluripotent cells, we calculated

the complementary percentages for more intuitive application:

Pluripotency score =
�
1 � DNAmcg00661673

�
+
�
1 � DNAmcg00933813

�

+
�
1 � DNAmcg21699252

�

The deconvolution approach is based on non-negative matrix

factorization, as described in our previous work (Frobel et al.,

2018; Schmidt et al., 2020). As reference matrix we used either

the mean DNAm values from the selection set or pyrosequencing

data, respectively. We included Table S3, which allows the user to

perform the reference-based deconvolution.

Transcriptomic analysis
RNA sequencing was performed by Life & Brain company (Bonn,

Germany) using NovaSeq 6000 sequencer (100 bp/read). The

FASTA files were checked with FastQC, and adapter sequences

were trimmed using Trimmomatic. The alignment for the reads

was done using STAR (hg38 genome build). Alternatively, count

matrices were downloaded from the PCBC web portal (https://

www.synapse.org/#!Synapse:syn2822494). Data were normalized

with the variance-stabilizing transformationmethod from the DE-

Seq2 package in R (Love et al., 2014). Differential gene expression

analysis was performed with the same package using a Wald test

(Benjamini-Hochberg adjusted p value < 0.05, absolute fold

change >2). To correlate DNAm and gene expression data, we

used the Illumina BeadChip annotation and merged the data by

matching to Ensembl IDs, only considering CpGs in promoter re-

gions (TSS1500 and TSS200).

To identify genes that are characteristic for the germ layers, we

either used published marker sets for the three germ layer and
156 Stem Cell Reports j Vol. 18 j 145–158 j January 10, 2023
stem cells (Maguire et al., 2013; Stronati et al., 2022) or we used

a previously published single-cell RNA-seq dataset of human EBs

(Han et al., 2018). All runs for day 8 EBs were merged, and counts

were normalized. The Seurat package (v4) was used for quality con-

trol and filtration of cells with abnormal feature counts (Hao et al.,

2021). Cells were clustered on K-nearest neighbor graph embed-

ding using the Louvain algorithm, and representative markers of

the individual clusters were identified using MAST (Finak et al.,

2015). The identity of each cluster was annotated using Gene

Ontology terms associated with marker genes using gprofiler2 (Kol-

berg et al., 2020), and clusters derived from the same germ layer

were merged. Subsequently, differentially expressed genes having

an adjusted p value < 0.05 and fold change >1.5 were considered

as markers for the germ layers (Table S2).

For the PluriTest assay, we used the online PluriTest tool (https://

www.pluritest.org/). RNA-seq FASTAQ files were uploaded to the

website where they were pre-processed, aligned, and analyzed

automatically using proprietary algorithm. The resulting pluripo-

tency and novelty scores were plotted accordingly.

Pyrosequencing
Genomic DNA (500 ng) was bisulfite converted overnight using

the EZ DNA Methylation Kit (Zymo) and eluted in 20 mL elution

buffer. Primer (Metabion) was designed with the PyroMark Assay

Design 2.0 Software (Qiagen; Table S4). Target sequences were

amplified with the PyroMark PCR Kit (Qiagen) with 2.5 mM

Mg2+ and a primer concentration of 0.3 mM. Pyrosequencing was

performed on a Q96 ID pyrosequencer (Qiagen).

Semi-quantitative reverse-transcriptase PCR
Total RNA was isolated using the NucleoSpin RNA Plus Kit

(Macherey-Nagel, Düren, Germany), quantified with a NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific, Waltham,

USA) and converted into cDNA using the High-Capacity cDNA

Reverse Transcription Kit (Applied Biosystems, Waltham, USA).

Semi-quantitative RT-PCR (qRT-PCR) was carried out using Power

SYBR Green PCR Master Mix (Applied Biosystems, Waltham,

USA) and gene-specific primers in a StepOnePlusmachine (Applied

Biosystems, Waltham, USA). Primers for POU5F1 (OCT4), GATA6,

TBXT (Brachyury), PAX6, and housekeeping gene GAPDH are pro-

vided in Table S5. ScoreCard analysis was performed with the

TaqManhPSC ScoreCard 96-well Kit (Thermo Fischer Scientific) ac-

cording to the manufacturer’s instructions.

Statistics
All statistical analysis was performed in R. For differential gene

expression (DEseq2, Wald test) and methylation (limma, moder-

ated t test) analysis, p values were adjusted using the Benjamini-

Hochberg procedure. All adjusted p values smaller than 0.05

were considered as being significant. For comparison of pluripo-

tency scores of LDC and HDC iPSCs, a Wilcoxon test was per-

formed using the ggsignif R package.
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